Notes on Vector Bundles
نویسنده
چکیده
−→ V, (v1, v2) −→ v1+v2, are smooth. Note that we can add v1, v2∈V only if they lie in the same fiber over M , i.e. π(v1)=π(v2) ⇐⇒ (v1, v2) ∈ V ×M V. The space V ×M V is a smooth submanifold of V ×V , as follows immediately from the Implicit Function Theorem or can be seen directly. The local triviality condition means that for every point m∈M there exist a neighborhood U of m in M and a diffeomorphism h : V |U ≡ π (U) −→ U×R, such that h takes every fiber of π to the corresponding fiber of the projection map π1 : U×R −→U , i.e. π1◦h=π on V |U so that the diagram
منابع مشابه
An Informal Introduction to Computing with Chern Classes
Chern classes are objects associated to vector bundles. They describe relationships between the vector bundle and the topology of the base space. They straddle the worlds of topology and algebra or geometry; as such, they can be subtle, and difficult to compute. On the other hand, they satisfy some nice properties, and they are useful tools. One goal of these notes is to give examples of severa...
متن کاملNotes on algebraic stacks
1 Moduli problems, spaces, and stacks. Vector bundles and K-theory 3 1.1 Some category theory . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Back to moduli spaces . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The way out of the problem . . . . . . . . . . . . . . . . . . . 7 1.4 Algebraic stacks and moduli of vector bundles . . . . . . . . . 7 1.5 K-theory of schemes . . . . . . . . . . ...
متن کاملGeneralized Theta Linear Series on Moduli Spaces of Vector Bundles on Curves
Contents 1. Introduction 1 2. Semistable bundles 2 2.1. Arbitrary vector bundles 2 2.2. Semistable vector bundles 4 2.3. Example: Lazarsfeld's bundles 6 2.4. Example: Raynaud's bundles 8 2.5. The moduli space 9 3. Generalized theta divisors 11 4. Quot schemes and stable maps 14 5. Verlinde formula and Strange Duality 16 5.1. Verlinde formula 16 5.2. Strange Duality 18 6. Base points 20 6.1. Abs...
متن کاملLecture Notes on Differentiable Manifolds
1. Tangent Spaces, Vector Fields in R and the Inverse Mapping Theorem 1 1.1. Tangent Space to a Level Surface 1 1.2. Tangent Space and Vectors Fields on R 2 1.3. Operator Representations of Vector Fields 3 1.4. Integral Curves 4 1.5. Implicitand Inverse-Mapping Theorems 5 2. Topological and Differentiable Manifolds 9 3. Diffeomorphisms, Immersions, Submersions and Submanifolds 9 4. Fibre Bundle...
متن کاملM392c Notes: K-theory
Part 1. Vector Bundles and Bott Periodicity 2 1. Families of Vector Spaces and Vector Bundles: 8/27/15 2 2. Homotopies of Vector Bundles: 9/1/15 5 3. Abelian Group Completions and K(X): 9/3/15 8 4. Bott’s Theorem: 9/8/15 12 5. The K-theory of X × S2: 9/10/15 15 6. The K-theory of the Spheres: 9/15/15 18 7. Division Algebras Over R: 9/17/15 22 8. The Splitting Principle: 9/22/15 25 9. Flag Manif...
متن کاملNotes on Contact Topology
1 Plane Fields and Contact Structures 2 1.1 Euler Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Classifying Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Cobordism classes of framed links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Contact Struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010