Notes on Vector Bundles

نویسنده

  • Aleksey Zinger
چکیده

−→ V, (v1, v2) −→ v1+v2, are smooth. Note that we can add v1, v2∈V only if they lie in the same fiber over M , i.e. π(v1)=π(v2) ⇐⇒ (v1, v2) ∈ V ×M V. The space V ×M V is a smooth submanifold of V ×V , as follows immediately from the Implicit Function Theorem or can be seen directly. The local triviality condition means that for every point m∈M there exist a neighborhood U of m in M and a diffeomorphism h : V |U ≡ π (U) −→ U×R, such that h takes every fiber of π to the corresponding fiber of the projection map π1 : U×R −→U , i.e. π1◦h=π on V |U so that the diagram

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Informal Introduction to Computing with Chern Classes

Chern classes are objects associated to vector bundles. They describe relationships between the vector bundle and the topology of the base space. They straddle the worlds of topology and algebra or geometry; as such, they can be subtle, and difficult to compute. On the other hand, they satisfy some nice properties, and they are useful tools. One goal of these notes is to give examples of severa...

متن کامل

Notes on algebraic stacks

1 Moduli problems, spaces, and stacks. Vector bundles and K-theory 3 1.1 Some category theory . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Back to moduli spaces . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The way out of the problem . . . . . . . . . . . . . . . . . . . 7 1.4 Algebraic stacks and moduli of vector bundles . . . . . . . . . 7 1.5 K-theory of schemes . . . . . . . . . . ...

متن کامل

Generalized Theta Linear Series on Moduli Spaces of Vector Bundles on Curves

Contents 1. Introduction 1 2. Semistable bundles 2 2.1. Arbitrary vector bundles 2 2.2. Semistable vector bundles 4 2.3. Example: Lazarsfeld's bundles 6 2.4. Example: Raynaud's bundles 8 2.5. The moduli space 9 3. Generalized theta divisors 11 4. Quot schemes and stable maps 14 5. Verlinde formula and Strange Duality 16 5.1. Verlinde formula 16 5.2. Strange Duality 18 6. Base points 20 6.1. Abs...

متن کامل

Lecture Notes on Differentiable Manifolds

1. Tangent Spaces, Vector Fields in R and the Inverse Mapping Theorem 1 1.1. Tangent Space to a Level Surface 1 1.2. Tangent Space and Vectors Fields on R 2 1.3. Operator Representations of Vector Fields 3 1.4. Integral Curves 4 1.5. Implicitand Inverse-Mapping Theorems 5 2. Topological and Differentiable Manifolds 9 3. Diffeomorphisms, Immersions, Submersions and Submanifolds 9 4. Fibre Bundle...

متن کامل

M392c Notes: K-theory

Part 1. Vector Bundles and Bott Periodicity 2 1. Families of Vector Spaces and Vector Bundles: 8/27/15 2 2. Homotopies of Vector Bundles: 9/1/15 5 3. Abelian Group Completions and K(X): 9/3/15 8 4. Bott’s Theorem: 9/8/15 12 5. The K-theory of X × S2: 9/10/15 15 6. The K-theory of the Spheres: 9/15/15 18 7. Division Algebras Over R: 9/17/15 22 8. The Splitting Principle: 9/22/15 25 9. Flag Manif...

متن کامل

Notes on Contact Topology

1 Plane Fields and Contact Structures 2 1.1 Euler Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Classifying Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Cobordism classes of framed links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Contact Struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010